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Abstract The pivot algorithm for self-avoiding walks has been implemented in a manner
which is dramatically faster than previous implementations, enabling extremely long walks
to be efficiently simulated. We explicitly describe the data structures and algorithms used,
and provide a heuristic argument that the mean time per attempted pivot for N -step self-
avoiding walks is O(1) for the square and simple cubic lattices. Numerical experiments
conducted for self-avoiding walks with up to 268 million steps are consistent with o(logN)

behavior for the square lattice and O(logN) behavior for the simple cubic lattice. Our
method can be adapted to other models of polymers with short-range interactions, on the
lattice or in the continuum, and hence promises to be widely useful.

Keywords Self-avoiding walk · Polymer · Monte Carlo · Pivot algorithm

1 Introduction and Results

The self-avoiding walk (SAW) model is an important model in statistical physics [16]. It
models the excluded-volume effect observed in real polymers, and exactly captures universal
features such as critical exponents and amplitude ratios. It is also an important model in the
study of critical phenomena, as it is the n → 0 limit of the n-vector model, which includes
the Ising model (n = 1) as another instance. Indeed, one can straightforwardly simulate
SAWs in the infinite volume limit, which makes this model particularly favorable for the
calculation of critical parameters. Exact results are known for self-avoiding walks in two
dimensions [14, 19] and for d ≥ 4 (mean-field behavior has been proved for d ≥ 5 [8]), but
not for the most physically interesting case of d = 3.

The pivot algorithm is a powerful and oft-used approach to the study of self-avoiding
walks, invented by Lal [13] and later elucidated and popularized by Madras and Sokal [17].
The pivot algorithm uses pivot moves as the transitions in a Markov chain which proceeds

N. Clisby (�)
ARC Centre of Excellence for Mathematics and Statistics of Complex Systems, Department
of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia
e-mail: n.clisby@ms.unimelb.edu.au

mailto:n.clisby@ms.unimelb.edu.au


350 N. Clisby

as follows. From an initial SAW of length N , such as a straight rod, new N -step walks are
successively generated by choosing a site of the walk at random, and attempting to apply
a lattice symmetry operation, or pivot, to one of the parts of the walk; if the resulting walk
is self-avoiding the move is accepted, otherwise the move is rejected and the original walk
is retained. Thus a Markov chain is formed in the ensemble of SAWs of fixed length; this
chain satisfies detailed balance and is ergodic, ensuring that SAWs are sampled uniformly
at random.

One typical use of the pivot algorithm is to calculate observables which characterize the
size of the SAWs: the squared end-to-end distance R2

e , the squared radius of gyration R2
g , and

the mean-square distance of a monomer from its endpoints R2
m. To leading order we expect

the mean values of these observables over all SAWs of N steps, with each SAW is given
equal weight, to be 〈R2

x〉N ∼ DxN
2ν (x ∈ {e,g,m}), with ν a universal critical exponent.

For N -step SAWs, the implementation of the pivot algorithm due to Madras and Sokal
has estimated mean time per attempted pivot of O(N0.81) on Z

2 and O(N0.89) on Z
3; perfor-

mance was significantly improved by Kennedy [9] to O(N0.38) and O(N0.74) respectively.
In this article, we give a detailed description of a new data structure we call the SAW-tree.

This data structure allows us to implement the pivot algorithm in a highly efficient manner:
we present a heuristic argument that the mean time per attempted pivot is O(1) on Z

2 and Z
3,

and numerical experiments which show that for walks of up to N = 228 −1 ≈ 2.7×108 steps
the algorithmic complexity is well approximated by O(logN). This improvement enables
the rapid simulation of walks with many millions of steps.

In a companion article [4], we describe the algorithm in general terms, and demonstrate
the power of the method by applying it to the problem of calculating the critical exponent ν

for three-dimensional self-avoiding walks.
Thus far the SAW-tree has been implemented for Z

2, Z
3, and Z

4, but it can be straightfor-
wardly adapted to other lattices and the continuum, as well as polymer models with short-
range interactions. Other possible extensions would be to allow for branched polymers, con-
fined polymers, or simulation of polymers in solution.

We intend to implement the SAW-tree and associated methods as an open source software
library for use by researchers in the field of polymer simulation.

1.1 Pivot Algorithm

Madras and Sokal [17] demonstrated, through strong heuristic arguments and numerical ex-
periments, that the pivot algorithm results in a Markov chain with short integrated autocor-
relation time for global observables. The pivot algorithm is far more efficient than Markov
chains which utilize local moves; see [15, 17, 22, 23] for detailed discussion.

The implementation of the pivot algorithm by Madras and Sokal utilized a hash table to
record the location of each site of the walk. They showed that for N -step SAWs the probabil-
ity of a pivot move being accepted is O(N−p), with p dimension-dependent but close to zero
(p � 0.2). As accepted pivots typically result in a large change in global observables such
as R2

e , this leads to the conclusion that the pivot algorithm has integrated autocorrelation
time O(Np), with possible logarithmic corrections. In addition, they argued convincingly
that the CPU time per successful pivot is O(N) for their implementation. Throughout this
article we work with the mean time per attempted pivot, T (N), which for the Madras and
Sokal implementation is O(N1−p).

Madras and Sokal argued that O(N) per successful pivot is best possible because it
takes time O(N) to merely write down an N -step SAW. Kennedy [9], however, recognized
that it is not necessary to write down the SAW for each successful pivot, and developed
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Table 1 T (N), the mean time per attempted pivot for N -step SAWs. A tighter bound for Z
4 is reported in

Sect. 3.5, but this relies on an untested assumption

Lattice Madras and Sokal Kennedy This work

Predicted Observed

Z
2 O(N0.81) O(N0.38) O(1) o(logN)

Z
3 O(N0.89) O(N0.74) O(1) O(logN)

Z
4 o(N) ? o(logN) ω(logN)

Z
d , d > 4 O(N) ? �(logN) ?

a data structure and algorithm which cleverly utilized geometric constraints to break the
O(N) barrier. In this paper, we develop methods which further improve the use of geometric
constraints to obtain a highly efficient implementation of the pivot algorithm.

1.2 Results

We have efficiently implemented the pivot algorithm via a data structure we call the SAW-
tree, which allows rapid Monte Carlo simulation of SAWs with millions of steps. This new
implementation can also be adapted to other models of polymers with short-range interac-
tions, on the lattice and in the continuum, and hence promises to be widely useful.

The heart of our implementation of the algorithm involves performing intersection tests
between “bounding boxes” of different sub-walks when a pivot is attempted. In [4] we gen-
erated large samples of walks with up to 225 − 1 ≈ 3.3 × 107 steps, but for the purpose
of determining the complexity of our algorithm we have also generated smaller samples of
walks of up to 228 − 1 ≈ 2.7 × 108 steps. For N = 228 − 1, the mean number of intersection
tests needed per attempted pivot is remarkably low: 39 for Z

2, 158 for Z
3, and 449 for Z

4.
In Sect. 3 we present heuristic arguments for the asymptotic behavior of the mean time

per attempted pivot for N -step SAWs, T (N), and test these predictions with computer ex-
periments for N ≤ 2.7 × 108. We summarize our results in Table 1; note that O(f (N)) indi-
cates T is bounded above by f asymptotically, o(f (N)) indicates f dominates T , ω(f (N))

indicates T dominates f , and �(f (N)) indicates f bounds T both above and below. For
comparison, we also give the algorithmic complexity of the implementations of Madras and
Sokal [17], and Kennedy [9]. In Sect. 3.5, we develop an argument for the complexity of
our algorithm on Z

4; this same argument leads to an estimate for the performance of the
implementation of Madras and Sokal on Z

4. We do not know the complexity of Kennedy’s
implementation for Z

4 and Z
d with d > 4, but we suspect it is O(Nq) with 0.74 < q < 1,

with possible logarithmic corrections.
Our implementation is also fast in practice: for simulations of walks of length 220 ≈ 106

on Z
3, our implementation is almost 400 times faster when compared with Kennedy’s, and

close to four thousand times faster when compared with that of Madras and Sokal. We have
measured T (N) for each implementation over a wide range of N on Z

2, Z
3, and Z

4, and
report these results in Sect. 6.

1.3 Outline of Paper

In Sect. 2, we give a detailed description of the SAW-tree data structure and associated
methods which are required for implementing the pivot algorithm.



352 N. Clisby

In Sect. 3 we present heuristic arguments that T (N) for self-avoiding walks on Z
2 and

Z
3 is O(1), and numerical evidence which shows that for walks of up to N = 228 − 1 ≈

2.7 × 108 steps T (N) is o(logN) for Z
2 and O(logN) for Z

3. We also discuss the behavior
of our implementation for higher dimensions.

In Sect. 4 we discuss initialization of the Markov chain, including details of how many
data points are discarded. We also explain why it is highly desirable to have a procedure
such as Pseudo_dimerize for initialization (pseudo-code in Sect. 2.7) when studying very
long walks, and show that the expected running time of Pseudo_dimerize is �(N).

In Sect. 5 we discuss the autocorrelation function for the pivot algorithm, and show that
the batch method for estimating confidence intervals is accurate, provided the batch size is
large enough. This confirms the accuracy of the confidence intervals for our data published
in [4].

Finally, in Sect. 6 we compare the performance of our implementation with previous
implementations of the pivot algorithm [9, 17]. We show that the SAW-tree implementation
is not only dramatically faster for long walks, it is also faster than the other implementations
for walks with as few as 63 steps.

2 Implementation Details

Self-avoiding walks (SAWs) are represented as binary trees (see e.g. [21]) via a recursive de-
finition; we describe here the SAW-tree data structure and associated methods using pseudo-
code.

These methods can be extended to include translations, splitting of walks, joining of
walks, and testing for intersection with surfaces. Indeed, for SAW-like models (those with
short range interactions), it should be possible to implement a wide variety of global moves
and tests for SAWs of N steps in time O(logN) or better. It is also possible to parallelize
code by, for example, performing intersection testing for a variety of proposed pivot moves
simultaneously. Parallelization of the basic operations is also possible, but would be consid-
erably more difficult to implement.

In this section we give precise pseudo-code definitions of the data structure and algo-
rithms. For reference, R-trees [7] and bounding volume hierarchies (see e.g. [10]) are data
structures which arise in the field of computational geometry which are related to the SAW-
tree.

2.1 The Self-avoiding Walk

For self-avoiding walks, the self-avoidance condition is enforced on sites rather than bonds,
and this means that the SAW-tree is naturally defined in terms of sites. This representation
also has the advantage that the basic objects, sites, have physical significance as they corre-
spond to the monomers in a polymer. The only consequences of this choice are notational:
a SAW-tree of n sites has n − 1 steps. We adopt this notation for the remainder of this sec-
tion. When discussing the complexity of various algorithms we will still use N rather than n

in order to be consistent with the companion article and other sections of the present work.
An n-site SAW on Z

d is a mapping ω : {0,1, . . . , n−1} → Z
d with |ω(i +1)−ω(i)| = 1

for each i (|x| denotes the Euclidean norm of x), and with ω(i) 
= ω(j) for all i 
= j . SAWs
may be either rooted or unrooted; our convention is that the SAWs are rooted at the site
which is at x̂1 (unit vector in the first coordinate direction), i.e. ω(0) = x̂1. This convention
simplifies some of the algebra involved in merging sub-walks, and is represented visually,
e.g. in Fig. 1, by indicating a dashed bond from the origin to the first site of the walk.
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Fig. 1 A self-avoiding walk of 5
sites, which we will refer to as ωa

We denote the group of symmetries of Z
d as Gd , which corresponds to the dihedral group

for d = 2, and the octahedral group for d = 3. This group acts on coordinates by permuting
any of the d coordinate directions (d! choices), and independently choosing the orientation
of each of these coordinates (2d choices); thus Gd has 2dd! elements. The group of lattice
symmetries for Z

3 therefore has 48 elements, and we use all of them except the identity
as potential pivot operations; other choices are possible. We can represent the symmetry
group elements as d × d orthogonal matrices, and the symmetry group elements act on the
coordinates written as column vectors.

We also define the (non-unique) pivot sequence representation of a self-avoiding random
walk on Z

d as a mapping from the integers to Gd , qω : {0,1, . . . , n−1} → Gd . The sequence
elements q(i) represent changes in the symmetry operator from site i − 1 to site i, while
qabs(i) represent absolute symmetry operations, i.e. relative to the first site of the walk. We
can relate this to the previous definition of a self-avoiding walk in terms of sites via the
recurrence relations

qabs(i) = qabs(i − 1)q(i), (1)

ω(i) = ω(i − 1) + qabs(i)x̂1, (2)

with 1 ≤ i ≤ n − 1, and initial conditions q(0) = I , qabs(0) = I , and ω(0) = x̂1.
As noted by Madras and Sokal (footnote 10, p. 132 in [17]), for the pivot sequence rep-

resentation it is possible to perform a pivot of the walk in time O(1) by choosing a site i

uniformly at random, and multiplying q(i) by a (random) symmetry group element. How-
ever, the pivot sequence representation does no better than the hash table implementation of
Madras and Sokal if we wish to determine if this change results in a self-intersection, or if
we wish to calculate global observables such as R2

e for the updated walk.
Forgetting for the moment the self-avoidance condition, and using the fact that Gd has

2dd! elements, we see that for random walks of n sites there are (2dd!)n−1 possible pivot
sequences, while there are only (2d)n−1 random walks. This suggests that each random walk
is represented by (2d−1(d − 1)!)n−1 pivot sequences. This can be derived directly by noting
that given a pivot sequence q(1), q(2), q(3), . . . , q(k), q(k + 1), . . . , q(n− 1), we can insert
a pivot q which preserves the vector x̂1, between two elements q(k) and q(k + 1) as follows

q(0), q(1), q(2), q(3), . . . , q(k)q, q−1q(k + 1), . . . , q(n − 1),

without altering the walk. The number of symmetry group elements which preserve x̂1 is
2dd!/(2d) = 2d−1(d − 1)!, and there are n − 1 locations where these symmetry group el-
ements can be inserted, leading to (2d−1(d − 1)!)n−1 equivalent pivot representations for a
random walk of n sites. For d = 2, given ω(i) the recurrence relations in (1) and (2) only fix
one of the two non-zero elements in q(i), leaving the choice of sign for the other non-zero
element free. For our example walk ωa we have

ωa = ((1,0), (1,1), (2,1), (3,1), (3,0)) . (3)

We give three of the 16 equivalent choices for the pivot representation of ωa , the first involv-
ing only proper rotations, the second with improper rotations for q(i) with 1 ≤ i ≤ 4, and



354 N. Clisby

Fig. 2 Examples of the merge
operation on SAWs: the open
circles (empty sites) of the
right-hand sub-walks are fixed to
the ends of the corresponding
left-hand sub-walks, and the
symmetries are then applied to
the right-hand sub-walks. At the
top, an identity symmetry
operation is applied, while at the
bottom the symmetry operation is
a 180◦ rotation

the third with proper and improper rotations alternating:

q(1)
ωa

=
((

1 0
0 1

)
,

(
0 −1
1 0

)
,

(
0 1

−1 0

)
,

(
1 0
0 1

)
,

(
0 1

−1 0

))
, (4)

q(2)
ωa

=
((

1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 1
1 0

)
,

(
1 0
0 −1

)
,

(
0 1
1 0

))
, (5)

q(3)
ωa

=
((

1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 −1
1 0

)
,

(
1 0
0 −1

)
,

(
0 1

−1 0

))
. (6)

The non-uniqueness of the pivot representation for SAWs is due to the fact that the
monomers (occupied sites) are invariant under the symmetry group Gd , i.e. it is not pos-
sible to distinguish the different orientations of a single site. The non-uniqueness is of no
practical concern, but perhaps hints that it may be possible to derive a more succinct and
elegant representation of walks than the mapping to Gd defined here.

The merge operation is the fundamental operation on SAWs which allows for the binary
tree data structure we call the SAW-tree. This is related to the concatenation operation de-
fined, for example, in Sect. 1.2 of [16]; for concatenation the number of bonds is conserved,
whereas for the merge operation the number of sites is preserved. Merging two SAWs with
n and m sites respectively results in a SAW with n + m sites. It is convenient to also in-
clude a pivot operation, q , when merging the walks, and the result of merging two walks
ω1 = (ω1(0),ω1(1), . . . ,ω1(n − 1)) and ω2 = (ω2(0),ω2(1), . . . ,ω2(m − 1)) is

merge(ω1, q,ω2) = (ω1(0),ω1(1), . . . ,ω1(n − 1),ω1(n − 1) + qω2(0),

ω1(n − 1) + qω2(1), . . . ,ω1(n − 1) + qω2(m − 1)). (7)

The merge operation is represented visually in Fig. 2. To merge two sub-walks, pin the
open circle of the left-hand sub-walk to the origin, and then pin the open circle of the right-
hand sub-walk to the tail end of the left-hand sub-walk. Finally, apply the symmetry q to the
right-hand sub-walk, using the second pin as the pivot point.
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2.2 Definitions

Here we define various quantities which are necessary for implementing our data structure
and for calculating observables such as the mean-square end-to-end distance, R2

e .
We first define various quantities which will be used to calculate observables which mea-

sure the size of a walk:

Xe(ω) ≡ ω(n − 1) (vector); (8)

X(ω) ≡
n−1∑
i=0

ω(i) (vector); (9)

X2(ω) ≡
n−1∑
i=0

ω(i) · ω(i) (scalar). (10)

A bounding box of a walk is a convex shape which completely contains the walk. The
obvious choice of shape for Z

d is the rectangular prism with faces formed from the coordi-
nate planes xi = const, 1 ≤ i ≤ d , with the constants chosen so that the faces of the prism
touch the walk, i.e. the bounding box has minimum extent. Other choices are possible, e.g.
other planes can be used such as xi ± xj = const, 1 ≤ i < j ≤ d , and have the advantage of
matching the shape of the walk more closely, but at the expense of more computational over-
head and memory consumption. With closer fitting bounding boxes, fewer intersection tests
need to be performed to ascertain whether two walks intersect. However, in practice, the
coordinate plane rectangular prism implementation was fastest on our computer hardware
(by a narrow margin), and has the benefit that it is straightforward to implement. The choice
of bounding box for continuum models is not as obvious; possibilities include spheres and
oriented rectangular prisms.

We note that the choice of bounding box shape determines the maximum number of sites,
b, a SAW can have so that it is guaranteed that its bounding box contains the sites of the
SAW and no others. Suppose we are given two SAWs for which the bounding boxes overlap:
if each of the walks has b or fewer sites, we can be certain that the two walks intersect, while
if at least one of the walks has more than b sites, it may be that the walks do not intersect.
The value of b determines the cut-off for intersection testing for the function Intersect in
Sect. 2.6. For Z

d with d ≥ 2, the bounding box with faces formed from the coordinate
planes leads to the maximum number of sites being two, as there are counter-examples
with three sites (e.g. the bounding box of ω = ((0,0), (1,0), (1,1)) also contains (0,1)).
For the bounding box with the faces being the coordinate planes and xi ± xj = const, the
maximum number of sites is three (as the bounding box of ω = ((0,0), (1,0), (2,0), (2,1))

also contains (1,1)). It is possible to push this one step further so that the maximum number
of sites is four, but five is not possible as we can see that ωa in Fig. 1 has five sites, and an
unvisited site on its convex hull, which must also therefore be interior to any bounding box.

We write bounding boxes as a product of closed intervals, in the form B(ω) = ×[inf xi :
x ∈ ω, sup xi : x ∈ ω], where the product is taken over 1 ≤ i ≤ d . Consider a walk ω, with
bounding box B , which is split into left- and right-hand sub-walks, ωl = (ω(0), . . . ,ω(k −
1)) and ωr = (ω(k), . . . ,ω(n−1)), with bounding boxes Bl = ×[ai, bi], and Br = ×[ci, di]
respectively. We can then define the union operation on bounding boxes,

B = Bl ∪ Br

≡ × ([ai, bi] ∪ [ci, di])
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= ×[inf{ai, ci}, sup{bi, di}]. (11)

The intersection operation is defined as

Bl ∩ Br = × ([ai, bi] ∩ [ci, di])
= ×[sup{ai, ci}, inf{bi, di}]. (12)

There is no guarantee that sup{ai, ci} ≤ inf{bi, di}, and we adopt the convention that an
interval [e, f ] is considered empty if e > f . If any interval is empty, then the corresponding
bounding box is also empty as it contains no interior sites. A quantity associated with the
bounding box which we will find useful is the sum of the dimensions of the bounding box,
Perim. If B = ×[ai, bi], then we define

Perim(B) =
d∑

i=1

(bi − ai + 1). (13)

For ωa (in Fig. 1) we have the following values for the various parameters:

n = 5; (14)

B(ωa) = [1,3] × [0,1]; (15)

Xe(ωa) = (3,0); (16)

X(ωa) = (1,0) + (1,1) + (2,1) + (3,1) + (3,0)

= (10,3); (17)

X2(ωa) = (1,0) · (1,0) + (1,1) · (1,1) + (2,1) · (2,1)

+(3,1) · (3,1) + (3,0) · (3,0)

= 1 + 2 + 5 + 10 + 9

= 27. (18)

The observables R2k
x , with x ∈ {e,g,m},1 ≤ k ≤ 5, may be straightforwardly calculated

from Xe, X, and X2. We give expressions for R2
x with x ∈ {e,g,m}, and note that higher

Euclidean-invariant moments can be obtained via R2k
x = (R2

x)
k (2 ≤ k ≤ 5) (these moments

are calculated for Z
2 in [3] and for Z

3 in [4]). In addition we introduce another observable,
R2

m, which measures the mean-square deviation of the walk from the endpoint ω(n − 1).

R2
e = |ω(n − 1) − ω(0)|2

= (
Xe − x̂1

) · (Xe − x̂1

)
(19)

R2
g = 1

2n2

n−1∑
i,j=0

|ω(i) − ω(j)|2

= 1

n
X2 − 1

n2
X · X (20)

R2
m = 1

2n

n−1∑
i=0

[|ω(i) − ω(0)|2 + |ω(i) − ω(n − 1)|2]



Efficient Implementation of the Pivot Algorithm for Self-avoiding Walks 357

= 1

2
+ 1

2
Xe · Xe − 1

n
x̂1 · X − 1

n
Xe · X + 1

n
X2 (21)

R2
m = 1

n

n−1∑
i=0

|ω(i) − ω(n − 1)|2

= Xe · Xe − 2

n
Xe · X + 1

n
X2 (22)

In [4], we chose to calculate R2
m rather than R2

m, as it has a slightly simpler expression, and
relied on the identity 〈R2

m〉 = 〈R2
m〉. Compared with R2

m, R2
m has larger variance but smaller

integrated autocorrelation time (for the pivot algorithm). Before performing the computa-
tional experiment in [4], we believed that given the same number of pivot attempts the con-
fidence intervals for 〈R2

m〉 and 〈R2
m〉 would be comparable. We have since confirmed that

working directly with R2
m results in a standard error which is of the order of 17% smaller

for d = 3, an amount which is not negligible; in future experiments we will calculate R2
m

directly.

2.3 Guide to the Interpretation of Pseudo-code

Here follow some comments to aid in the interpretation of the pseudo-code description of
the SAW-tree data structure and associated algorithms.

– All calls are by value, following the C programming language convention. Data structures
are passed to methods via pointers.

– Pointers: the walk w is a data structure whose member variables can be accessed via
pointers, e.g. the vector for the end-to-end distance for the walk w is w → Xe. The left-
hand sub-walk of w is indicated by wl , and the right-hand sub-walk by wr . This notation
is further extended by indicating wll for the left-hand sub-walk of wl , wlr for the right-
hand sub-walk of wl , etc.

– Suggestive notation for member variables used to improve readability; all quantities, such
as “Xe” (the end-to-end vector) must correspond to a particular walk w. e.g. Xe ≡ w →
Xe, Xl

e ≡ wl → Xe (i.e., superscript l indicates that Xl
e is the end-to-end vector for the left

sub-walk), ql ≡ wl → q , nl ≡ wl → n.
– Variables with subscript t are used for temporary storage only.
– Comments are enclosed between the symbols /* and */ following the C convention.
– Boolean negation is indicated via the symbol “!”, e.g. ! TRUE = FALSE.

2.4 SAW-Tree Data Structure

The key insight which has enabled a dramatic improvement in the implementation of the
pivot algorithm is the recognition that sequences of sites and pivots can be replaced by
binary trees. The n leaves of the tree are individual sites of the walk, and thus encode no in-
formation, while each of the n− 1 (internal) nodes of the tree contain aggregate information
about all sites which are below them in the tree. We call this data structure the SAW-tree,
which may be defined recursively: a SAW-tree of n sites either has n = 1 and is a leaf, or has
a left child SAW-tree with 0 < k < n sites, and a right child SAW-tree with the remaining
n − k sites.

Our implementation of the SAW-tree node is introduced in Table 2. A SAW-tree consists
of one or more SAW-tree nodes in a binary tree structure; the pointers wl and wr allow
traversal from the root of the tree to the leaves, while wp allows for traversal from the leaves
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Table 2 Definition of the SAW-tree node data structure; see Sect. 2.2 for definitions of each of the member
variables. The node contains variables which are required for traversal of the SAW-tree (wp , wl , wr ), inter-
section testing (n, q , Xe, B), and calculation of observables R2

x with x ∈ {e,g,m} (n, Xe, X, X2). If the only
observable to be calculated is R2

e , then X and X2 can be omitted

SAW-tree node data structure

Type Name Description

integer n Number of sites

SAW-tree ptr wp Parent

SAW-tree ptr wl Left-hand sub-walk

SAW-tree ptr wr Right-hand sub-walk

matrix q Symmetry group element

vector Xe ω(n − 1)

vector X X = ∑n−1
i=0 ω(i)

integer X2 X2 = ∑n−1
i=0 ω(i) · ω(i)

bounding box B Convex region

of the tree to the root. SAW-trees are created by merging other SAW-trees, with a symmetry
operation acting on the right-hand walk. In particular, any internal node w may be expressed
in terms of its left child wl , a symmetry operation q ≡ w → q , and its right child wr via a
merge operation:

w = merge(wl, q,wr). (23)

The leaves of the SAW-tree correspond to sites in a SAW, and are thus labeled from 0
to n − 1. A binary tree with n leaves has n − 1 internal nodes, and we label these nodes
from 1 to n− 1, so that the symmetry q(i) is to the left of ω(i),ω(i + 1), . . . ,ω(n− 1). The
symmetry q(0) is not part of the SAW-tree as it is applied to the whole walk, and thus cannot
be used in a merge operation. For some applications it may be necessary to keep track of
q(0), e.g. when studying polymers in a confined region, but in [4] this was not necessary.

Assume that the end-to-end vectors, Xe, and symmetry group elements, q(i), for a SAW-
tree and its left and right children are given. If we know the location of the anchor site of
the parent node, xabs, along with the overall absolute symmetry group element qabs being
applied to the walk, we can then find the same information for the left and right children as
follows:

Left: xabs ⇐ xabs

qabs ⇐ qabs

Right: xabs ⇐ xabs + qabsXl
e

qabs ⇐ qabsq
r

Thus ω(i) can be determined for any site i by iteratively performing this calculation while
following the (unique) path from the root of the SAW-tree to the appropriate leaf. N.B.: xabs

must be updated before qabs.
We give explicit examples of SAW-trees in Appendix A. In Fig. 22, we give a SAW-tree

representation of a SAW with n sites which is precisely equivalent to the pivot sequence rep-
resentation. We also give two equivalent representations of ωa (shown in Fig. 1) in Figs. 23
and 24.
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Conceptually we distinguish single-site walks (individual sites), which reside in the
leaves of the tree, from multi-site walks.1 In particular, the symmetry group element of a
single site has no effect, and in the case where all monomers are identical then all single
sites are identical.

If the SAW-tree structure remains fixed it is not possible to rotate part of the walk by
updating a single symmetry group element, in contrast to the pivot sequence representation.
This is because when we change a symmetry group element in a given node, it only al-
ters the position of sites which are in the right child of the node. To rotate the part of the
walk with sites labeled i + 1 and greater, we choose the i th internal node of the SAW-tree
from the left. We then need to alter the symmetry group element of this node, and also
all nodes which are above and to the right of it in the SAW-tree. If we select a random
node then it will likely be near the leaves of the tree, and assuming that the SAW-tree is
balanced this means that on average O(logN) symmetry group elements will need to be
altered.

However, we note that the root node at the top of the tree has no parents, and therefore
only one symmetry group element needs to be altered to rotate the right-hand part of the
walk in this case. By utilizing tree-rotation operations, which alter the structure of the tree
while preserving node ordering, it is possible to move the i th node to the root of the SAW-
tree. Once this has been done, it is then possible to implement a rotation of part of the walk
by updating a single symmetry group element. On average, O(logN) of these tree-rotation
operations are required.

Binary trees are a standard data structure in computer science. By requiring trees to be
balanced, i.e. so that the height of a tree with N nodes is bounded by a constant times
logN , optimal bounds can be derived for operations such as insertion and deletion of nodes
from the tree. We refer the interested reader to Sedgewick [21] for various implementations
of balanced trees, such as red-black balanced trees. We have the advantage that our SAW-
tree is, essentially, static, which means that we can make it perfectly balanced without the
additional overhead of maintaining a balanced tree.

2.5 Primitive Operations

Included in this subsection are the primitive operations, which would generally not be called
from the main program.

Left and right tree-rotations are modified versions of standard tree operations; for binary
trees, only ordering needs to be preserved, while for SAW-trees the sequence of sites needs
to be preserved, which means that symmetry group elements and other variables need to be
modified.

Procedure:
Merge(SAW-tree ptr wl , SAW-tree ptr wr , SAW-tree ptr w)

/* Two SAWs are joined together, head to tail. Merge wl and wr into w, i.e.
w ⇐ merge(wl, q,wr). Pointers are not altered. See (7) and Fig. 2. */

n ⇐ nl + nr

B ⇐ Bl ∪ (Xl
e + qBr )

1Technical note: as the leaves are all identical, in practice we use a sentinel node for the leaves, saving on
memory usage.
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Fig. 3 Left tree-rotation applied
to a SAW-tree, where A, B, and C
are arbitrary SAW-trees. LHS and
RHS are different representations
of the same self-avoiding walk

Fig. 4 Right tree-rotation
applied to a SAW-tree, where A,
B, and C are arbitrary SAW-trees.
LHS and RHS are different
representations of the same
self-avoiding walk

Xe ⇐ Xl
e + qXr

e
X ⇐ Xl + qXr + nrXl

e
X2 ⇐ Xl

2 + Xr
2 + 2Xl

e · (qXr ) + nrXl
e · Xl

e
End /* Merge */

Procedure:
LR(SAW-tree ptr w)

/* Left tree-rotation applied to w. Update of pointers to parents not shown, and
note that only one merge operation is necessary. The pseudocode is faithful to
the implementation used in the present work and [4], but the definition of this
operation is likely to change in future implementations. In Fig. 3, w refers to
the node with symmetry q1 on the LHS, and q1q2 on the RHS. In future, we
will adopt the convention that w always refers to the same node with respect to
left-right ordering. By this convention, w would refer to node with symmetry
q1 on the RHS. */

wt ⇐ wr

wr ⇐ wt → wr

wt → wr ⇐ wt → wl

wt → wl ⇐ wl

wl ⇐ wt

qt ⇐ q

q ⇐ qtq
l

ql ⇐ qt

Merge(wll ,wlr ,wl)
End /* LR */

Procedure:
RR(SAW-tree ptr w)
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/* Right tree-rotation applied to w. Update of pointers to parents not shown. Note
that only one merge operation is necessary. The pseudocode is faithful to the
implementation used in the present work and [4], but the definition of this
operation is likely to change in future implementations. In Fig. 4 w refers to
the node with symmetry q2 on the LHS, and q1 on the RHS. In future, we will
adopt the convention that w always refers to the same node with respect to
left-right ordering. By this convention, w would refer to node with symmetry
q−1

1 q2 on the RHS. */
wt ⇐ wl

wl ⇐ wt → wl

wt → wl ⇐ wt → wr

wt → wr ⇐ wr

wr ⇐ wt

qt ⇐ q

q ⇐ qr

qr ⇐ q−1qt

Merge(wrl ,wrr ,wr )
End /* RR */

Function:
Find_node(integer nt , SAW-tree ptr w)
/* Returns a pointer to the nth

t node from the left in the SAW-tree w. This may either
be implemented as a numerical function, if the address of the correct node can be
easily determined (such as if the nodes of w are arranged in memory in pre-order
fashion), or returned from a look-up array. This look-up array is static, and so
will not need to be updated after it is created. Note: we require this function to
take time O(1), and thus it is inappropriate to use a binary search implementation
which may take time O(logN). This function is required by Attempt_pivot_fast. */

2.6 User Level Operations

Included in this subsection are user level operations which would typically be called from
the main program.

Procedure:
Generate_SAW-tree(integer n)
/* Allocates memory for the SAW-tree, and creates the initial arrangement of the tree

in memory. We use a strictly balanced tree layout, which guarantees O(logN)

behavior for basic operations. We tested pre-order and van Emde Boas layouts;
given that performance for large N was memory bound, we were surprised to
find that the pre-order layout was fastest, although we will experiment more with
this in the future (the van Emde Boas tree layout [24] is an example of a cache-
oblivious data structure [5, 12]). */

Function:
Random_integer_uniform(integer a, integer b)
/* Returns an integer in the interval [a, b) selected uniformly at random. */

Function:
Random_integer_log(integer a, integer b)
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Fig. 5 Shuffle up operation
applied to node with symmetry
q3 in a SAW-tree, via a sequence
of left and right tree-rotations,
with A, B, C, and D arbitrary
SAW-trees. LHS and RHS are
different representations of the
same self-avoiding walk

/* Returns an integer i selected in the interval [a, b) with probability

P (i) = log(1 + 1
i−a+1 )

log(b − a + 1)
. (24)

This probability distribution has the property that if we set a = 1 for convenience
and choose a length scale 1 ≤ x < 2x ≤ b, then

P (i ∈ [x,2x)) = log(2x) − logx

logb

= log 2

logb
, (25)

i.e. the probability of i lying in the semi-open interval [x,2x) is independent of x. */

Function:
Random_symmetry()
/* Symmetry selected uniformly at random, excluding identity. Other choices are

possible. */

Procedure:
Accumulate_statistics(SAW-tree w, Boolean success)
/* Accumulate statistics for Euclidean-invariant moments R2k

x with x ∈ {e,g,m},
and 1 ≤ k ≤ 5. When the pivot attempt is unsuccessful there is no need to recal-
culate observables; in fact, by using a counter, updates to storage variables only
need to be made when success = TRUE, i.e. when the last pivot attempt was
successful. */

Procedure:
Shuffle_up(integer n0, SAW-tree ptr w)

/* Brings node n0 to the root of the SAW-tree, via a series of tree-rotation opera-
tions. See Fig. 5. */

if n0 = nl then
/* Do nothing, node already at root. */

else if n0 < nl then
Shuffle_up(n0,wl)
RR(w)

else if n0 > nl then
Shuffle_up(n0 − nl ,wr )
LR(w)
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end if
Return

End /* Shuffle_up */

Procedure:
Shuffle_down(SAW-tree ptr w)

/* Restores node at root to its correct place in the balanced SAW-tree, via a series
of tree-rotation operations. Note that this operation is only necessary if one
wishes that the SAW-tree remains balanced, and must be paired with Shuffle-
_up. */

nt ⇐ �(n + 1)/2�
if nt = nl then

/* Do nothing, node is in correct place. */
else if nt < nl then

RR(w)
Shuffle_down(wr )

else if nt > nl then
LR(w)
Shuffle_down(wl )

end if
Return

End /* Shuffle_down */

The function Intersect is at the heart of our implementation of the pivot algorithm; we
recommend the reader consult the start of Sect. 3.2 for an explanation of how Intersect
works.

Function:
Intersect (vector xl

abs, matrix ql
abs, SAW-tree ptr wl ,

vector xr
abs, matrix qr

abs, SAW-tree ptr wr )
/* Returns TRUE if wl and wr intersect, FALSE otherwise. xl

abs and xr
abs are the

absolute positions of the anchor points of the walks wl and wr , and ql
abs and

qr
abs are overall symmetry group elements. */

/* First, calculate the absolute positions of the bounding boxes. If they do not
intersect, then wl and wr cannot intersect. */

Bl
t ⇐ xl + qlBl

Br
t ⇐ xr + qrBr

if Bl
t ∩ Br

t = ∅ then
Return FALSE

end if
if nl ≤ 2 and nr ≤ 2 then

/* The bounding boxes of wl and wr intersect, and thus wl and wr must in-
tersect as each walk has two or fewer sites. The cut-off is dependent on the
shape of the bounding box, and is the maximum number of sites a SAW can
have which guarantee that the bounding box contains only the sites of the
SAW and no others. For Z

d the value of the cut-off for the rectangular prism
is two as given here; see Sect. 2.2 for further discussion. */

Return TRUE
end if
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if nl ≥ nr then
/* Split the left SAW-tree; compare the SAW-trees which are closest together

on the chain first, as they are the most likely to intersect. */
if Intersect(xl

abs + ql
absX

ll
e , ql

absq
l , wlr , xr

abs, qr
abs, wr ) then

Return TRUE
end if
Return Intersect(xl

abs, ql
abs , wll , xr

abs, qr
abs, wr )

else
/* Split the right SAW-tree; compare the SAW-trees which are closest together

on the chain first, as they are the most likely to intersect. */
if Intersect(xl

abs, ql
abs , wl , xr

abs, qr
abs, wrl) then

Return TRUE
end if
Return Intersect(xl

abs, ql
abs , wl , xr

abs + qr
absX

rl
e , qr

absq
r , wrr )

end if
End /* Intersect */

Shuffle_intersect is akin to the procedure developed by Madras and Sokal [17] for inter-
section testing: by building new walks incrementally moving outwards from the pivot site
they achieved a speed-up from O(N) to O(N1−p) for unsuccessful pivot attempts. In Sect. 3
we present a heuristic argument that the speed-up achieved for the SAW-tree implementation
is from O(logN) to O(1).

Function:
Shuffle_intersect(SAW-tree ptr w, symmetry q0, integer was_left_child,

integer is_left_child)
/* Hybrid algorithm which combines elements of Shuffle_up and Intersect. w

is the pivot node, and q0 is the pivot operation which acts on the part of the
walk to the right of w (both ancestors and descendants). was_left_child and
is_left_child are integer flags specifying the local tree structure. Function re-
turns true if the left- and right-hand walks intersect, FALSE otherwise. The
pseudo-code here reproduces the method, but some small-scale optimizations
have been omitted for the sake of clarity. In particular, some computations are
performed more often than strictly necessary, e.g. rotations of bounding boxes.
For Z

3, this results in the implementation here running approximately 40%
slower than the optimized implementation. By using temporary variables to
store the modified tree nodes, we guarantee that the original walk is left un-
modified. Thus it is safe to execute concurrent versions of this function on the
same SAW-tree in parallel. */

/* Check if the left- and right- children of w intersect. */
if was_left_child = 1 then

/* We have already verified that wl and wrl do not intersect; check if wl and
wrr intersect. */

if Intersect(0, I , wl , Xl
e + qq0Xrl

e , qq0q
r , wrr ) then

Return TRUE
end if

else if was_left_child = 0 then
/* We have already verified that wlr and wr do not intersect; check if wll and

wr intersect. */
if Intersect(0, I , wll , Xl

e, qq0, wr ) then
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Return TRUE
end if

else if was_left_child = −1 then
/* First call of this function, and so we have no prior information; check if wl

and wr intersect. */
if Intersect(0, I , wl , Xl

e, qq0, wr ) then
Return TRUE

end if
end if
/* Check to see if we have reached the top of the tree. */
if wp = NULL then

Return FALSE
end if
/* Not at top of tree, and so we need to perform a left or right rotation. First we

need to determine if wp is a left or right child. */
if wpp = NULL then

/* wp is the root of the tree so is_left_child_new will not be needed. */
else if wppl = wp then

is_left_child_new ⇐ TRUE
else

is_left_child_new ⇐ FALSE
end if
/* Create a temporary SAW-tree node wt which is a copy of wp so we do not alter

the original walk. */
wt ⇐ wp

if is_left_child then
/* right tree-rotation needed. */
RR(wt )

else
/* left tree-rotation needed. */
LR(wt )

end if
Return Shuffle_intersect(wt , q0, is_left_child, is_left_child_new)

End /* Shuffle_intersect */

2.7 High Level Functions

Here follows a pseudo-code description of three routines which provide high level function-
ality for typical usage of the pivot algorithm.

We define two versions of the function Attempt_pivot, one which is conceptually simple,
while in Sect. 3 we argue that the other version is asymptotically faster for Z

2 and Z
3.

Function:
Attempt_pivot_simple(SAW-tree ptr w, integer nt , symmetry qt )

/* Attempt to apply a pivot to w at site nt with symmetry qt ; if successful update
the walk, otherwise leave walk unchanged. Return a boolean value to indicate
whether the pivot operation successfully changed the walk. */

Shuffle_up(nt ,w)
q ⇐ qqt

intersection ⇐ Intersect(0, I , wl , Xl
e, q , wr )
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if intersection then
/* Reject pivot, restore original symmetry. */
q ⇐ qq−1

t

end if
Shuffle_down(w)
/* Pivot was successful if sub-walks did not intersect. */
Return !intersection

End /* Attempt_pivot_simple */

Function:
Attempt_pivot_fast(SAW-tree ptr w, integer nt , symmetry qt )

/* Attempt to apply a pivot to w at site nt with symmetry qt ; if successful update
the walk, otherwise leave walk unchanged. Return a boolean value to indicate
whether the pivot operation successfully changed the walk. */

wt ⇐ Find_node(nt )
if w

pl
t = NULL then

/* Dummy argument, is_left_child will not be required. */
is_left_child ⇐ TRUE

else if w
pl
t = wt then

is_left_child ⇐ TRUE
else

is_left_child ⇐ FALSE
end if
intersection ⇐ Shuffle_intersect(wt , qt ,−1, is_left_child)
if !intersection then

/* Accept pivot, perform symmetry operation. */
Shuffle_up(nt ,w)
q ⇐ qqt

Shuffle_down(w)
end if
/* Pivot was successful if sub-walks did not intersect. */
Return !intersection

End /* Attempt_pivot_fast */

Procedure:
Pseudo_dimerize(SAW-tree w)

/* Uses merge and pivot operations to generate an initial N -step SAW in time
�(N) which is difficult to distinguish from a SAW sampled uniformly at ran-
dom. See Sect. 4 for discussion about why it is highly desirable to have such a
procedure, and also for analysis of the algorithmic complexity. */

/* Generate initial left- and right-hand sub-walks. */
Pseudo_dimerize(wl )
Pseudo_dimerize(wr )
/* Perform pivot operations on each of the sub-walks while attempting to merge

them. When the two sub-walks are mutually avoiding, exit loop. */
do

nt ⇐ nl− Random_integer_log(1, nl )
qt ⇐ Random_symmetry()
Attempt_pivot(wl , nt , qt )
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nt ⇐ Random_integer_log(1, nr )
qt ⇐ Random_symmetry()
Attempt_pivot(wr , nt , qt )
q ⇐ Random_symmetry()

while Intersect(0, I , wl , Xl
e, q , wr )

Merge(wl,wr,w)
/* Perform additional pivots on the SAW, preferentially sampling close to the

joint, in an attempt to reduce any sampling bias. We can attempt o(n/ logn)

pivots without changing the asymptotic behavior of the algorithm; we choose
to attempt n1/2 pivots. We do not believe that these additional pivots are strictly
necessary. */

for i = 1 to n1/2 do
nt ⇐ nl− Random_integer_log(1, nl)
qt ⇐ Random_symmetry()
Attempt_pivot(w, nt , qt )
/* Now the walks are combined, we have to shift node label by nl . */
nt ⇐ nl+ Random_integer_log(0, nr )
qt ⇐ Random_symmetry()
Attempt_pivot(w, nt , qt )

end for
Return

End /* Pseudo_dimerize */

2.8 Main Program

Here follows a pseudo-code description of the main program to generate self-avoiding walks
via the pivot algorithm.

Procedure:
Main()

/* Create SAW-tree structure. */
w ⇐ Generate_SAW-tree(n)
/* Initialize SAW-tree. */
Pseudo_dimerize(w)
/* Warm up the Markov chain by discarding ndiscard time steps. */
for i = 1 to ndiscard do

nt ⇐ Random_integer_uniform(1, n)
qt ⇐ Random_symmetry()
Attempt_pivot(w, nt , qt )

end for
/* Perform the computer experiment, collecting data on global observables at

every time step. */
for i = 1 to nsample do

nt ⇐ Random_integer_uniform(1, n)
qt ⇐ Random_symmetry()
success = Attempt_pivot(w, nt , qt )
Accumulate_statistics(w, success)

end for
End /* Main */
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3 Algorithmic Complexity

Our goal in this section is to calculate the mean time per attempted pivot, T (N), which can
in turn be expressed in terms of the mean time for successful pivots, TS(N), and the mean
time for unsuccessful pivots, TU(N). This is done as follows:

T (N) = Pr(successful)TS(N) + Pr(unsuccessful)TU(N)

= O(N−p)TS(N) + O(1)TU(N)

= N−pTS(N) + TU(N), (26)

where the probability of a pivot being successful is O(N−p) as mentioned in Sect. 1.1, and
constant factors have been dropped. Note that this expression is valid for Z

2 and Z
3, while

higher dimensions are discussed in Sect. 3.5.
The thread of argument is complicated by the fact that we have two implementations

we wish to characterize, Attempt_pivot_simple and Attempt_pivot_fast. As the names
indicate, we will find that Attempt_pivot_fast is asymptotically faster, and so T (N) may
be regarded as being the mean time per attempted pivot for the procedure Attempt_pivot-
_fast.

We first introduce notation and do a minor calculation in Sect. 3.1. In Sect. 3.2 we give
a detailed explanation of the behavior of the procedure Intersect, and develop a heuris-
tic argument that TS(N) is �(logN). In Sect. 3.3 we show that for Attempt_pivot_simple
TU(N) = �(logN), and therefore T (N) = �(logN), while in Sect. 3.4 we provide a heuris-
tic argument that for Attempt_pivot_fast TU(N) = O(1), which leads to the prediction
that T (N) = O(1). In Sect. 3.5 we discuss the complexity of the algorithm for dimensions
greater than three, and finally in Sect. 3.6 we examine the numerical evidence. There is
modest numerical evidence supporting our conclusion that TS(N) is �(logN) for Z

2 and
Z

3, while the numerical evidence suggests TU(N) = o(logN) for Z
2 and TU(N) = I (logN)

for Z
3. This is consistent with TU(N) = O(1), but far from conclusive.

A far simpler version of the argument for our prediction that T (N) = O(1) for Z
2 and

Z
3 is given in the companion article [4].

3.1 Background

We introduce the notation of the level, l, of a node, which is the number of generations
that separate the node from the leaves of the tree. The leaves are at level zero, their parents
are at level one, etc. This is non-standard notation, as usually the concept of depth is used
to describe trees, with the root at depth zero, its children at depth one, etc. For a perfectly
balanced tree with 2k leaves (sites), the nodes at any fixed level represent sub-walks of the
same number of sites independent of k, and for this reason we find the level notation to be
useful.

We will specialize to the case where we have a SAW-tree, W , with n = 2k sites; this
makes things somewhat simpler to deal with, but makes no difference otherwise to the al-
gorithmic complexity. W therefore has 2k leaves, 2k − 1 internal nodes, and the level of the
root is k.

The first step of the pivot algorithm is to select a pivot node uniformly at random, from
the n − 1 internal nodes of W . The average level of this node is

E(l) = 1

2k − 1

k∑
j=1

j2k−j
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= 2k+1 − 2 − k

2k − 1

= 2 − O

(
k

2k

)
. (27)

We note that the discussion below is sufficiently general that it applies to related models
of polymers in the excluded volume limit, such as the Domb-Joyce model, interacting self-
avoiding walks, self-avoiding walks on other lattices, or self-avoiding walk models in the
continuum. SAW-tree implementations of these other models do not yet exist. The discus-
sion is valid for dimension d ≥ 2, but there will be some subtleties for d ≥ 4 which will be
explored in Sect. 3.5.

3.2 Successful Pivot

To estimate the expected running time of Intersect, we first need to get a clear understanding
of what the algorithm does. Intersect recursively tests for the intersection of the bounding
boxes of the left and right SAW-trees, and searches until either an intersection has been
found, or until it has been shown that no intersection is possible (i.e. no bounding boxes
intersect). The search proceeds by recursively splitting the longer of the left and right SAW-
trees, and although the action of Shuffle_up on the SAW-trees complicates things some-
what, the comparison typically occurs between left and right SAW-trees which are of the
same length, up to a factor of two. We note that the search method chosen is depth-first
search, which minimizes memory usage, and also that the choice of splitting procedure is a
key feature in the performance of the algorithm. By choosing to split the larger walk, and
then first testing for intersection between the walks on the left and right hand sides which
are closest together on the chain, this means that intersections are more likely to be found
rapidly, allowing the search to terminate after only a small portion of the walk has been
examined.

For convenience we will only consider testing for intersection between the left- and right-
hand sides of W , i.e. we assume the pivot node is the root of the SAW-tree. This will simplify
the discussion of the algorithm, but the conclusions drawn will be valid for any balanced
SAW-tree, with any number of sites.

We will first examine the behavior of Intersect in the case that a pivot attempt is success-
ful, when there is no intersection. Later we will consider what happens when an intersection
is found.

When applied to W , Intersect compares sub-walks on the left-hand side at level j with
sub-walks on the right-hand side at levels j and j + 1. When bounding boxes overlap, the
search proceeds to the next lowest level in the tree, until there are no overlaps. The nodes
that this search procedure visits within W induces a binary tree W ′ with internal nodes that
are sub-walks whose bounding boxes have been found to overlap sub-walks on the other
side, and whose leaves are sub-walks which do not overlap sub-walks on the other side. As
W ′ is a binary tree, the number of leaves is exactly one more than the number of internal
nodes. The algorithmic complexity of Intersect, TS(N), is the number of intersection tests
performed between sub-walks on the left- and right-hand sides of W ′ (neglecting constant
factors).

We seek to simplify the characterization of the counting problem, by first noting that the
number of intersection tests which involve leaves of W ′ is at most four times the number
of intersection tests involving nodes of W ′, as we only test for intersection between two
sub-walks when both of their parents intersect. Thus TS(N) is asymptotically equal to the
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Fig. 6 ωb , a self-avoiding walk
of 16 sites

Fig. 7 A SAW-tree
representation of ωb , with arrows
drawn between nodes on the left-
and right-hand sides which
approach each other

number of pairs of sub-walks with overlapping bounding boxes, where sub-walks on the
left-hand side are at level j , and sub-walks on the right-hand side are at levels j and j + 1.
We then note that the number of pairs of sub-walks with overlapping bounding boxes with
these rules are at most twice the number of pairs of sub-walks with overlapping bounding
boxes on the same level. TS(N) is therefore given by the number of pairs of sub-walks on
the left- and right-hand sides of W with overlapping bounding boxes which are at the same
level.

We introduce a new notation, describing the overlap between the bounding boxes of two
sub-walks at level j in W as a “j -approach”, while any overlap between boxes of sub-walks
which are at the same level we denote as an “approach”. Thus TS(N) is given by the expected
number of approaches between the left- and right-hand sides of W .

We give an example of a SAW with 16 sites in Fig. 6, and show its corresponding SAW-
tree in Fig. 7, with arrows drawn between sub-walks on the left- and right-hand sides which
approach each other.

To this point our argument is exact, but we must now resort to heuristic arguments to
count the expected number of approaches for W .

We first note that although there are typically O(N) nearest neighbor contacts for a SAW
of length N , the number of contacts between two halves of a SAW is typically O(1), as
shown via renormalization group [18] and Monte Carlo [2] methods. When we attempt to
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pivot part of a SAW, it is guaranteed that each of the two sub-walks remain self-avoiding,
and hence we only need to determine if the left- and right-hand sub-walks intersect. If the
resulting walk is self-avoiding, then we expect, on average, that there will be a constant
number of contacts between the two sub-walks.

We now consider the renormalization group transformation along the polymer chain de-
scribed by Kremer et al. [11] in the context of a Monte Carlo renormalization group calcu-
lation (see also [6, 20]), which maps a polymer chain with hard sphere interactions to a new
chain by rescaling the number of monomers (n), the separation between monomers (L), and
the hard sphere diameter (D), so as to keep the mean-square end-to-end distance fixed. The
interaction strength is defined as δ = D/L. Kremer et al. concluded that this renormalization
group transformation converged to a non-trivial (SAW) fixed point, with interaction strength
δ� > 0. In the neighborhood of the fixed point the renormalization transformations are

n′ = n

s
, (28)

L′ = AsνL, and (29)

D′ = AsνD, (30)

for some positive constant A.
We can translate this to our SAW-tree representation of a self-avoiding walk with 2k sites

if we regard the sub-walks of each node at a particular level in the tree as the monomers
of a renormalized self-avoiding walk. We consider the transformation that occurs as we
pass from level j to level j + 1, with 1 � 2j � 2k . Sub-walks at level j have nj = 2k−j

monomers, and as each sub-walk contains 2j sites the mean separation between monomers
is therefore Lj = A1(2j )ν for some constant A1. The corresponding quantities for level j +1
are

nj+1 = 2k−j−1 = nj

2
, (31)

Lj+1 = A1(2
j+1)ν = 2νLj . (32)

We note that the expectation of the perimeter of the bounding box of a self-avoiding walk
with n monomers is A2n

ν for some constant A2 (see (13) in Sect. 2.2 for the definition of
the perimeter). If we take the (effective) hard sphere diameter at this particular level j to be
some constant multiplied by the expected perimeter at level j , Pj , Dj = A3Pj = A3A2(2j )ν ,
and we pass to level j + 1, then in order to keep the interaction strength fixed we must have

Dj+1 = 2νDj

= 2νA3Pj

= 2νA3A2(2
j )ν

= A3A2(2
j+1)ν

= A3Pj+1, (33)

i.e. the new effective hard sphere diameter is given by the same constant A3 multiplied by
Pj+1, and hence by induction Dm = A3Pm ∀m ≥ j . Thus the nodes at level j in a SAW-
tree of total depth k, where 1 � 2j � 2k , may be regarded as a self-avoiding walk with
2k−j monomers, separated by links of length Lj = A1(2j )ν , with hard sphere monomers of
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diameter Dj = A3Pj . This renormalization procedure becomes exact in the limit of large j

and k .
We now note that approaches for the SAW-tree correspond to contacts for the renormal-

ized walks, where the minimum distance at which two monomers of the walk are said to
be in contact is a fixed multiple of the hard sphere diameter. For fixed values of the inter-
action strength parameter and contact distance the number of contacts between the left- and
right-hand sides of a walk is of O(1), and we now know that as we proceed up the tree from
the leaves to the root we are converging to a fixed value of the interaction strength. Thus
the expected number of contacts between the two halves of the walk also converges to a
constant.

Let the expected number of approaches at level j for a walk with n sites be cn,j . The
previous arguments imply that limn→∞ cn,j = cj for some positive constant cj , where the
sequence is not necessarily monotonic. We then expect that the limit limj→∞ cj = c� exists,
and that the cn,j are bounded, i.e. there exists a constant c† such that cn,j < c† ∀n, j . Thus

TS(n) =
log2 n∑
j=0

cn,j

<

log2 n∑
j=0

c†

= c† log2 n, (34)

and so TS(N) = O(logN). In fact, we expect that cn,j ≈ c� for sufficiently large n and j ,
and so TS(N) = �(logN).

3.3 Algorithmic Complexity of Attempt_pivot_simple

On each iteration Attempt_pivot_simple executes the procedures Shuffle_up and Shuffle-
_down as well as the function Intersect.

The expected running time of both Shuffle_up and Shuffle_down is independent of
whether the pivot attempt is successful or not. From Sect. 3.1, the expected level of a SAW-
tree node selected uniformly at random is two. Thus the expected number of tree-rotations
that Shuffle_up must perform in order to bring a pivot node to the top of a SAW-tree with k

levels, or Shuffle_down must perform to restore the node to its correct place in the tree, is
k − 2 +O(k/2k). Given that k = log2 n, the algorithmic complexity of both Shuffle_up and
Shuffle_down is therefore O(logN).

We already know Intersect takes time �(logN) in the case that the pivot attempt is
successful, which combined with the �(logN) complexity of the shuffle operations gives

TS(N) = �(logN). (35)

When the pivot attempt is unsuccessful and an intersection is found, Intersect terminates
early and thus takes time O(logN) (we will argue in Sect. 3.4 that it is in fact O(1), but this
makes no difference to the argument here). Combined with the �(logN) complexity of the
shuffle operations this results in

TU(N) = �(logN). (36)
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For Attempt_pivot_simple we therefore have overall algorithmic complexity of

T (N) = N−pTS(N) + TU(N)

= N−p�(logN) + �(logN)

= �(logN). (37)

3.4 Algorithmic Complexity of Attempt_pivot_fast

On each iteration Attempt_pivot_fast executes the function Shuffle_intersect, while it only
executes the procedures Shuffle_up and Shuffle_down when a pivot attempt is successful.

The key point to understand regarding the action of Shuffle_intersect, is that this func-
tion shuffles the pivot node up the SAW-tree only as far as necessary to find an intersection
between the left- and right-hand sub-walks. In the case that the pivot attempt is successful,
Shuffle_intersect must therefore shuffle the pivot node up to the top of the SAW-tree, but
in the case where the pivot attempt is unsuccessful the pivot node is only shuffled up just far
enough to be able to find this first intersection.

When the pivot attempt is successful, Shuffle_intersect must search the whole SAW-
tree for intersections, and so is exactly equivalent to performing Shuffle_up, Intersect, and
Shuffle_down. As shown in Sects. 3.2 and 3.3, all of these procedures take time �(logN),
and thus

TS(N) = �(logN). (38)

The situation is considerably more complicated when the pivot attempt is unsuccessful
and an intersection is found. We suppose that the pivot node is the j th (internal) node from
the left, which has j sites (leaves) to the left, and n − j sites to the right. Shuffle_intersect
will then search W until it finds the intersection with j − il being the label of the left-hand
site and j + ir the label of the right-hand site such that sup(il, ir ) is minimum. Note: this
description is approximate, as the SAW-tree structure complicates the issue of exactly which
pair of intersecting sites is found, and the actual il and ir which are found may be different
from the optimal values. However, we are confident that for the average case this argument
is correct up to a constant factor in the size of il and ir .

The sites j − il and j + ir are exactly the pair of intersecting sites which would be
discovered in the usual implementation of the pivot algorithm [17], where the new walk is
incrementally built by moving outwards from the pivot site. Let us assume, without loss of
generality, that ir > il . We define Pr(i) as the probability that i is the intersection that is
found, i.e. the conditional probability that the sub-walk with sites [j − i, j + i] has a self-
intersection, but there are no intersections between sites in the open interval (j − i, j + i).
Madras and Sokal [17] convincingly argued that the expected value of ir is

E(ir ) =
2k−j∑
ir=1

ir Pr(ir )

= O(N1−p), (39)

with p positive and close to zero for Z
2 and Z

3.
The interval [j − il , j + ir ] corresponds to a self-avoiding loop, and it may be quite dif-

ficult to characterize the probability space of these configurations. We strongly suspect that
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these configurations are sufficiently close to self-avoiding walks so that the mean number
of approaches between the intervals [j − il , j ) and [j, j + ir ] is O(log ir ). However, we do
not have an argument to support this statement, and so we now make the assumption that
the mean time for Shuffle_intersect to confirm that the sub-walk (j − ir , j + ir ) is non-
intersecting is O(log ir ). To then find the intersection between j − il and j + ir will take
additional time of O(log ir ).

We now take j to be a typical node, which places it near the middle of the walk with
j ≈ 2k−1, and at level two in the SAW-tree. To determine the expected time to find the
intersection between il and ir , we need to determine the probability distribution for ir , given
j = 2k−1 = N/2 (fixing j makes the argument simpler, but does not change the result).
Equation (39) suggests that for sufficiently large ir , Pr(ir ) = O(i

−1−p
r ). We therefore neglect

sub-dominant terms and take the leading order approximation Pr(ir ) ≈ A/i
1+p
r ; this may be

a very bad approximation for small ir .
Using this approximation, we can now proceed to determine TU(N):

TU(N) =
N/2∑
ir=1

(Time to find intersection) Pr(ir )

=
N/2∑
ir=1

log ir
A

i
1+p
r

. (40)

We observe that for large N TU(N) approaches a constant from below, i.e. TU(∞) = O(1).
To determine the rate of approach, we examine TU(∞) − TU(N):

TU(∞) − TU(N) ≈
∫ ∞

N/2
log ir

A

i
1+p
r

dir

= A

p2

(
N

2

)−p (
p log

N

2
+ 1

)
(41)

Without detailed understanding of the exact form of Pr(ir ), it is impossible to estimate
TU(∞) − TU(N) for any particular value of N . However, we can gain a rough idea of the
rate of approach to the constant TU(∞) by determining a natural length scale, L, from the
solution of

TU(∞) − TU(L)

TU(∞) − TU(1)
= 1

e
, (42)

i.e. L is the length at which our approximation for the deviation from the limiting value has
decayed to 1/e of its initial value. For Z

2, p ≈ 0.19 which gives L ≈ 1.6×105, while for Z
3,

p ≈ 0.11 and so L ≈ 5.8 × 108. We can clearly see that convergence to constant behavior
may indeed be very slow, particularly for Z

3.
For Attempt_pivot_fast we therefore have overall algorithmic complexity of

T (N) = N−pTS(N) + TU(N)

= O
(
N−p logN + 1

)
= O (1) . (43)

In practice, sub-leading terms may result in behavior which is quite different from O(1) for
lengths of the order of millions or even billions of steps.
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3.5 d > 3

For d > 3 the time spent on successful pivots is non-negligible, and this changes the overall
mean time per attempted pivot.

As discussed by Madras and Sokal [17], we expect that the exponent associated with the
acceptance fraction, p, is of the same order of magnitude as the critical exponent γ , with a
heuristic argument that p � γ − 1. It appears to be the case for Z

2 and Z
3 that p < γ − 1;

if p ≤ γ − 1 holds for d > 3, then this implies that p is zero for d ≥ 4, with perhaps a
logarithmic correction for d = 4.

For d = 4, the number of self-avoiding walks of length N , cN , is given asymptotically
by cN ∼ A(logN)1/4μN . Therefore, the probability of being able to successfully merge two
SAWs (see Sect. 2.1 for definition of the merge operation) of N steps (N + 1 sites) to form
a SAW of length 2N + 1 (2N + 2 sites) is

c2N+1

c2
N

≈ A(log(2N + 1))1/4 μ2N+1

A2 (logN)1/2 μ2N

= O
(
(logN)−1/4

)
. (44)

We have already observed that γ − 1 
= p for Z
3, and so we expect that the exponent of

logN in (44) is unlikely to be the same as for the probability of a successful pivot. A plau-
sible guess for the probability is Pr(successful) = O((logN)−κ ), with 0 < κ < 1. We have
performed a preliminary analysis of the data for the acceptance fraction, f , for Z

4, which
suggests that κ � 0.42; however, the plot of log(log(−f )) versus log logN has not settled
down to linearity by N = 228 − 1 ≈ 2.7 × 108, and so the error on this estimate may well be
quite large. Assuming this functional form is correct, we obtain

Pr(ir ) = − d

dir
(log ir )

−κ

= O
(
i−1
r (log ir )

−κ−1
)

(45)

TU(N) ≈
∫ N

1
log ir i−1

r (log ir )
−κ−1 dir

=
∫ N

1
i−1
r (log ir )

−κ dir

= O
(
(logN)1−κ

)
. (46)

Assuming that 0 < κ < 1, we have

T (N) = Pr(successful)TS(N) + Pr(unsuccessful)TU(N)

= (logN)−κ TS(N) + TU(N)

= O
(
(logN)−κ logN + (logN)1−κ

)
= O

(
(logN)1−κ

)
. (47)

Note that the time spent on successful pivots is of precisely the same order as the time spent
on unsuccessful pivots. Once again, we mention that the above expression is based on a
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plausible but untested assumption. We are confident that T (N) = ω(1), and also T (N) =
o(logN) (this is the expression reported in Tables 1 and 3).

For Z
2 and Z

3, we could see that as p → 0, the natural length scale L obtained from
(42) diverges. For this reason, we expect that deviations from the leading order behavior of
T (N) for Z

4, where p = 0 with logarithmic corrections, may be large even for extremely
long walks with 109 steps or more.

For d > 4, we can use the mean-field approximation and ignore long range correlations
within the chain, by assuming that a sub-walk of length N consists of sites selected uni-
formly at random from a sphere of radius r = O(Nν) = O(N1/2). Assuming that we already
have a self-avoiding sub-walk with sites in the interval (j − ir , j + ir ), then the probability
that the site j + ir intersects with one of the previous sites is Pr(ir ) = O(ir/rd) = O(i

1−d/2
r ).

Therefore

TU(N) ≈
∫ N

1
log ir i

1−d/2
r dir

= O(1). (48)

Finally, we have

T (N) = Pr(successful)TS(N) + Pr(unsuccessful)TU(N)

= O(1)TS(N) + O(1)TU(N)

= O(logN + 1)

= O(logN). (49)

As TS(N) = �(logN), this leads to the stronger statement that T (N) = �(logN). Note that
the complexity of the algorithm is now dominated by the time spent on successful pivots.

3.6 Numerical Evidence

In Fig. 8 we present T (N) for Attempt_pivot_fast (Z2 and Z
3), and Attempt_pivot_simple

(Z2), for lengths from N = 27 − 1 to N = 228 − 1 ≈ 2.7 × 108. In Fig. 9 we present

	T (N) ≡ T (N
√

2) − T (N/
√

2); (50)

the domain of N for this plot is reduced due to the crossover in algorithm performance
which occurs at N ≈ 104. These estimates for T (N) were obtained in a separate data run
from the main computer experiment in the companion article [4]. The computers used were
SunFire X4600M2 machines with 8 quad-core AMD Barcelona CPUs with clock frequency
2.3 GHz, and 64 GB memory.

In Fig. 8, the plot for Attempt_pivot_simple appears to be linear, and this is verified in
Fig. 9 where 	T appears to be constant, providing support for the prediction that T (N) =
�(logN). The plot for Attempt_pivot_fast for Z

2 appears to be consistent with eventually
approaching a constant; in Fig. 8 we see that T (N) is visibly curved for N > 105, and is
plausibly o(logN), while in Fig. 9 we observe that 	T (N) appears to be steadily declining.
The final point increases somewhat, but there is an anomalous increase for all three data
sets which strongly suggests this is an artifact. For the final data point a large fraction of
machine memory was used, and so it is very likely that some limit with the hardware was
reached, causing degraded performance. For Z

3, there is no curvature visually apparent in
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Fig. 8 T (N) for Z
2, and Z

3,
where for Z

2 data were collected
for both the simple and fast
versions of Attempt_pivot

Fig. 9 	T (N) for Z
2 and Z

3,
where for Z

2 data were collected
for both the simple and fast
versions of Attempt_pivot

Fig. 8 which suggests T (N) = O(logN), but if we examine Fig. 9 we see weak numerical
evidence supporting T (N) = o(logN), due to the decline in 	T (N) for N > 106.

Rather than directly measuring the run-time of a computer experiment, it is also possi-
ble to directly measure the mean number of intersection tests required, I (N), per attempted
pivot for SAWs of N steps. For Attempt_pivot_fast, we can relate T (N) to I (N) as fol-
lows:

TS(N) = logN + IS(N), (51)

TU(N) = IU(N), (52)

where IS(N) and IU(N) are the mean number of intersection tests when a pivot attempt
is successful and unsuccessful respectively. Determining I (N) is far cleaner than directly
measuring T (N), which is affected by hardware, and it is also straightforward to separately
determine IS(N) and IU(N).

We have performed another computer experiment where we measured IS(N), IU(N),
and I (N), with lengths from N = 7 to N = 228 − 1 ≈ 2.7 × 108. In each case the initial
109 configurations were discarded (independent of N ), and then 100 batches of 108 config-
urations were generated. The data from this computer experiment is presented visually in
Figs. 10–15, where

	I (N) ≡ I (N
√

2) − I (N/
√

2). (53)
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Fig. 10 IS(N) and IU(N) for
Attempt_pivot_fast on Z

2

Fig. 11 	IS(N) and 	IU(N)

for Attempt_pivot_fast on Z
2

This procedure does not properly initialize the Markov chain for large N , but we have
checked the resulting time series for any evidence of systematic errors, and we are confi-
dent that the systematic error is small compared to the statistical error. We do not show the
statistical errors in Figs. 10–15, but the largest errors are smaller than the data point symbols;
the small amount of scatter visible in plots of 	I (N) is consistent with these errors.

We note in passing that the mean number of intersection tests required per attempted
pivot is remarkably low: for N = 228 − 1, I (N) is 39 for Z

2, 158 for Z
3, and 449 for Z

4.
Examining the evidence for Z

2 from Figs. 10 and 11, we can see clearly that IS(N)

is convex up to N = 228 − 1, and as N → ∞ the lin-log plot of IS(N) smoothly ap-
proaches a straight line strongly supporting the statement IS(N) = �(logN). This leads
to TS(N) = �(logN), in accordance with our conclusion in Sect. 3.2. The evidence for
IU(N) is less conclusive: IU(N) is convex for small N , but becomes concave once a thresh-
old is reached. We do not feel that it is likely that there is an additional length scale be-
yond N = 228 − 1 where the behavior of IU(N) would change, and therefore believe that
the most likely scenario is that 	IU(N) will decay smoothly to zero, which would imply
IU(N) = o(logN). This argument is by no means conclusive, but it is consistent with the
prediction from Sect. 3.4 that IU(N) = O(1).

The evidence for Z
3 from Figs. 12 and 13 is less clear. In Sect. 3.4 we argued that for

Z
3 the asymptotic regime would be reached at far greater lengths than for Z

2, and this
certainly appears to be the case. The graphs for IS(N) suggest that IS(N) = �(logN), but
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Fig. 12 IS(N) and IU(N) for
Attempt_pivot_fast on Z

3

Fig. 13 	IS(N) and 	IU(N)

for Attempt_pivot_fast on Z
3

we do not believe the evidence is particularly strong, as there is no extended flat region for
	IS(N) (as can be seen for Z

2). The plots for IU(N) show that IU(N) is convex for N up
to approximately N = 106, before becoming concave. If the downward trend in 	IU(N)

were to continue in the same manner as for Z
2, then this would imply IU(N) = o(logN).

However, the numerical evidence supporting IU(N) = o(logN) is weak at best, while a
stronger case can be made on the basis of the numerics that IU(N) = O(logN).

For Z
4, the evidence from Figs. 14 and 15 appears to support the statements IS(N) =

ω(logN) and IU(N) = ω(logN), as the plots for both IS(N) and IU(N) are convex at
N = 228 − 1. This directly contradicts the predictions that IS(N) = �(logN) and IU(N) =
o(logN). However, this is not too surprising, as for Z

4 we have p = 0 with logarithmic
corrections, and so the asymptotic regime may not be reached until N is truly large, i.e.
N � 228.

In summary, the numerical evidence supports our heuristic argument that TS(N) =
�(logN) for Z

2 and to lesser extent for Z
3. We argue that the data for IU(N) and TU(N)

imply TU(N) = o(logN) for Z
2, and TU(N) = O(logN) for Z

3; the numerics are consis-
tent with predictions that TU(N) = O(1). However, the asymptotic regime has not yet been
reached at N = 228 − 1, and so no strong conclusion regarding TU(N) can be made based
on the numerics. For Z

4 the numerical evidence does not support the conclusions from our
heuristic arguments; we believe that this is due to the asymptotic regime being well beyond
N = 228 − 1.
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Fig. 14 IS(N) and IU(N) for
Attempt_pivot_fast on Z

4

Fig. 15 	IS(N) and 	IU(N)

for Attempt_pivot_fast on Z
4

We wish to make one final point: although the performance of an O(1) implementation
must eventually be far superior to the performance of an �(logN) implementation, we note
that for N as high as 2.7 × 108 the speed-up gained for Z

2 is only a factor of 1.65 for
Attempt_pivot_fast versus Attempt_pivot_simple. This factor can be expected to grow,
but even for walks on Z

2 with 1012 steps, Attempt_pivot_fast will be only a factor of two
faster than Attempt_pivot_simple.

3.7 Summary

Although T (N) is asymptotically smaller for Z
2 and Z

3 than for higher dimensions, this
does not mean that our implementation is more efficient for Z

2 and Z
3 than for higher di-

mensions, as it is the integrated autocorrelation time in CPU units for global observables
which is important. The integrated autocorrelation time in physical units (pivot attempts),
τint(N), for observables such as R2

e is of approximately the same order as the time needed
to achieve a successful pivot, perhaps with an additional logarithmic factor [17]. The best
available evidence suggests that there is no logarithmic factor for Z

2 and Z
3 [15, 17], but

there is as yet no evidence on this question for Z
d with d ≥ 4. We define τ̃int(N) as the inte-

grated autocorrelation time in CPU units, which can be expressed as τ̃int(N) = τint(N)T (N).
Neglecting constant factors, the relevant expressions for T (N) and τ̃int(N) are therefore

T (N) = Pr(successful)TS(N) + Pr(unsuccessful)TU(N); (54)
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Table 3 T (N) and τ̃ (N) for N -step SAWs on Z
d . The expressions for τ̃int(N) may have an additional

logarithmic factor [17]

Z
2

Z
3

Z
4

Z
d , d > 4

T (N) O(1) O(1) o(logN) �(logN)

τ̃int(N) O(N0.19) O(N0.11) O(logN) �(logN)

τ̃int(N) = τint(N)T (N)

= 1

Pr(successful)
T (N)

= TS(N) + Pr(unsuccessful)

Pr(successful)
TU(N). (55)

This leads to the estimates for the complexity of T (N) and τ̃int(N) for Z
d given in Table 3.

We observe that our implementation of the pivot algorithm has a crossover at dimension
d = 4: for d < 4, most CPU time is spent on unsuccessful pivots, while for d > 4, most CPU
time is spent on successful pivots.

4 Initialization

As discussed in [17], the pivot algorithm has short integrated autocorrelation time of O(Np),
but long exponential autocorrelation time of O(N1+p) (p positive, but close to zero). As
it is infeasible to initialize the Markov chain for large N by directly sampling from the
equilibrium distribution via dimerization [1] (for d ≥ 4 dimerization is sufficiently efficient
that it can be used even for very long walks), there will necessarily be a systematic bias
introduced from the initialization. To ensure that the systematic error is much less than
the statistical error, it is necessary to discard a number of time steps which is significantly
larger than the exponential autocorrelation time. Madras and Sokal [17] argued that the
exponential autocorrelation time is O(N/f ), where f is the acceptance fraction of the pivot
algorithm, and discarded the first 20N/f time steps. We adopt the same procedure here. We
note that for sufficiently large N the time for initialization can dominate the running time
of the algorithm; for the longest walks studied, initialization took approximately 2 weeks of
computer time.

There is an additional complication for our implementation: although we expect the mean
time per pivot attempt for the SAW-tree implementation to be O(1), this is not necessarily
true for atypical SAWs. In particular, if the Markov chain is initialized with a walk with
long straight segments, such as a straight rod, then there can be O(N) nearest neighbor
contacts between two halves of a walk, and so in the worst case a successful pivot may take
time O(N), which is the same as the average-case performance of the implementation of
Madras and Sokal, and far worse than O(logN). We have not precisely characterized the
average-case behavior of the SAW-tree implementation when initialized with a straight rod,
but it is clear that pivot attempts are far slower when the walk has many straight segments.
It may be of interest to study the typical performance of the algorithm when initialized with
a straight rod, e.g. to characterize how rapidly the CPU time per pivot attempt decays to the
equilibrium value, and this will be done in a future computer experiment.
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Fig. 16 Initialization for
33554431-step SAWs on Z

3, in
batches of 108; means for
batches of 109 configurations are
shown as lines. The initial
configuration was generated
using Pseudo_dimerize

To overcome the difficulty involving straight rods, we developed the pseudo-dimerization
procedure defined in Sect. 2.6, Pseudo_dimerize. This procedure utilizes repeated pivot op-
erations to generate SAWs in time �(N) which are quite difficult to distinguish from SAWs
sampled from the uniform distribution. For N = 33554431, 20N/f corresponds to approxi-
mately 50 batches of 108. In Fig. 16, initialization bias is visually apparent for (at most) the
first 10 batches, which suggests that discarding 20N/f configurations is quite conservative
when initializing the Markov chain by using the pseudo-dimerization procedure. If we could
argue that the pseudo-dimerization samples from a distribution which is in some sense close
to the uniform distribution, and if we could quantify this, then it might be possible to spend
less time on initialization. In the absence of any such argument, we strongly recommend a
cautious approach, i.e. that 20N/f configurations should be discarded at the beginning of
each data run.

Although this has not been carefully tested, it seems that there is no significant increase
in the time per attempted pivot during the initialization period when the initial SAW is
generated via the pseudo-dimerization procedure. It may appear that Pseudo_dimerize is
not strictly necessary, but in practice it significantly extends the length of walks which can
be studied compared to initialization with a straight rod.

4.1 Algorithmic Complexity of Pseudo_dimerize

We will now provide a theoretical argument as to why pseudo-dimerization takes time
�(N).

The mean CPU time needed for Pseudo_dimerize to generate a SAW of n sites may be
expressed recursively from the time required to generate two SAWs of n/2 sites. We use the
number of steps N = n− 1 in the following expressions for consistency with other sections,
and denote the mean CPU time as TPD(N). Thus we have:

TPD(N) = 2TPD(N/2) + (CPU time to merge walks)

= 2TPD(N/2) + (CPU time per pivot attempt)

× (Expected number of pivot attempts) (56)

In Sect. 3 we predicted that the CPU time per pivot attempt for Z
2 and Z

3 is O(1), and
O(logN) for Z

d with d ≥ 2. We will use the weaker bound O(logN) for our argument
here. Calculating the expected number of pivot attempts is, however, quite subtle. Naively,
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we can assume that each of the n/2 site walks has been sampled uniformly from SAWs of
length n/2; we expect that this approximation is “good enough”, and will only result in a
small error that will not change our conclusions. The number of SAWs of N steps for Z

2

and Z
3 is given asymptotically by cn ∼ AμNNγ−1, and so the probability of successfully

merging two independent SAWs with n/2 sites is given by

Pr(merge) = cn−1

c2
n/2−1

≈ Aμn−1(n − 1)γ−1

(Aμn/2−1(n/2 − 1)γ−1)2

= O(N1−γ ) (57)

However, successive SAWs in the Markov chain are highly correlated, and we account for
this correlation by introducing an observable C, defined as

C(ωl,ωr) =
{

1 ωl and ωr can be merged

0 ωl and ωr cannot be merged.
(58)

The expected number of pivot attempts before the left and right sub-walks are success-
fully merged is τint(C)/〈C〉, and we know that

〈C〉 ≡ Pr(merge) = O(N1−γ ).

In our implementation of Pseudo_dimerize we perform an additional O(N1/2) pivot at-
tempts after the sub-walks have been merged, and hence

TPD(N) = 2TPD(N/2) + O(logN)(Nγ−1τint(C) + N1/2)

= 2TPD(N/2) + O(Nγ−1 logN)τint(C) + O(N1/2 logN). (59)

Equation (57) leads to the conclusion that the mean distance of the first intersection
between the left- and right-hand sub-walks from the joint where the walks meet is O(N2−γ ).
However, there may well be other length scales which are also important for the calculation
of τint(C); in particular, the shape of the walks near the joint at distance scales from O(1) up
to O(N2−γ ) will strongly affect the probability of successful merging. This will be discussed
in much greater detail in a subsequent paper, in the context of our calculation of the critical
exponent γ for self-avoiding walks.

We expect that τint(C) is of at most the same order as the time needed to achieve a suc-
cessful pivot on all possible length scales, i.e. the time to achieve a successful pivot in each
of the ranges, in terms of distance from the joint, of [1,2), [2,4), [4,8), . . . , [n/2, n−1). By
choosing pivot nodes using Random_integer_log, pivot sites are chosen uniformly at ran-
dom on a logarithmic scale in terms of their distance from the joint, and so in time O(logN)

pivot attempts are made on all length scales. When selecting the pivot site uniformly at ran-
dom (on a linear scale), the probability of a successful pivot is O(N−p). We expect that a
pivot attempt is more likely to be successful if the pivot site is near one end rather than close
to the middle, and thus for pivots selected on a logarithmic scale the probability of a suc-
cessful pivot will remain O(N−p). Altogether, when using Random_integer_log to select
pivot sites, this implies that τint(C) = O(Np logN). Thus, our final recurrence relation is

TPD(N) = 2TPD(N/2) + O(Nγ−1+p log2 N) + O(N1/2 logN). (60)
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Fig. 17 Autocorrelation
function for observables R2

e , R2
g ,

and R2
m. See (22) for a definition

of R2
m; the key point is that

〈R2
m〉 = 〈R2

m〉 for all N

For λ < 1, the solution of the recurrence relation TPD(N) = 2TPD(N/2)

+ O(Nλ log2 N) + O(N1/2 logN) is TPD(N) = �(N). The sequence of approximations
used leads to the estimate λ ≈ γ − 1 + p ≈ 0.53 for Z

2 and λ ≈ 0.27 for Z
3; we are con-

fident that our approximations are sufficiently accurate that the correct λ will be less than
one, and hence that the expected running time of Pseudo_dimerize is indeed �(N). This
argument can be straightforwardly repeated for Z

d , d ≥ 4, leading to the same conclusion
that TPD(N) = �(N).

We have clear numerical evidence from informal computer experiments that this result is
correct.

5 Error Estimates and the Autocorrelation Function

Following [15], and given the variance of an observable, var(A) = 〈A2〉 − 〈A〉2, we define
the autocorrelation function for the time series measurement of an observable A as

ρAA(t) = 〈AsAs+t 〉 − 〈A〉2

var(A)
. (61)

We have calculated the autocorrelation function for the Euclidean-invariant moments R2k
x

with x ∈ {e,g,m},1 ≤ k ≤ 5, for N = 2l − 1, 9 ≤ l ≤ 22, for times t ≤ 8192. We invested
approximately 300 hours of CPU time in this endeavor, a relatively small amount compared
with the 16500 CPU hours spent on the computer experiment to determine ν in [4]. The
autocorrelation functions for R2

x , with N = 511 and N = 222 − 1 = 4194303, are shown in
Fig. 17. Error bars are not shown on the graph, but the approximate size of the errors can be
inferred by the degree of scatter from smooth behavior.

Despite the apparent linearity observed in Fig. 17 (particularly for N = 4.2 × 106), it
is surprisingly difficult to extract reliable estimates for the rate of decay of the tail of the
autocorrelation function. Perhaps this is because the tail is not characterized by a single
exponent. Madras and Sokal [17] showed that the pivot algorithm itself has a variety of
exponents for the acceptance fraction for different classes of lattice symmetries, and this
behavior may extend to the autocorrelation function itself. This problem certainly deserves
further study, but we do not have data of sufficient quality to be able to accurately charac-
terize the autocorrelation function.

In Fig. 18, we calculated the integrated autocorrelation time for R2
e using two different

methods.
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Fig. 18 τint for R2
e

For the direct method, we calculated

τint(A) = 1

2
+

∞∑
t=1

ρAA(t) (62)

by using direct summation for short times (t ≤ 128), and fitting the intermediate regime with
a power law truncated at exactly t = N/f (where f is the fraction of pivot attempts which
are successful). The accuracy of this method relies on the assumptions that the exponential
autocorrelation time is of O(N/f ), and that the intermediate regime of the autocorrelation
function can be adequately fitted by a single power law. We neglect the regime t > N/f

where ρ(t) is presumed to decay exponentially, as the contribution of this tail to τint is
negligible compared to the error introduced by other approximations, e.g. the choice of
t = N/f rather than t = cN/f with c 
= 1.

The indirect method used the batch estimates for the observables, and corresponding
confidence intervals stdev(Ā), by solving

stdev(Ā) =
(

2τint(A)var(A)

nsample

) 1
2

(63)

for τint(A). The accuracy of this technique relies on the assumption that the batch error
estimate is accurate, which in turn relies upon the degree of correlation between successive
batches being negligible. Provided the exponential autocorrelation time is finite (guaranteed
for a finite system), then this condition will be satisfied for sufficiently large batch size. If
this condition were not satisfied then estimates of stdev(Ā), and consequently τint(A), would
be systematically low. To estimate τint for R2

x , with x ∈ {e,g,m}, we used data from the
companion article [4], with 1000 batches of 108 pivot attempts, and 125 batches of 8 × 108

pivot attempts.
The two indirect estimates shown in Fig. 18 are indistinguishable, although there is more

scatter for the batches of 8 × 108 because of the smaller number of batches used for the
estimate of stdev(Ā). This is strong evidence that a batch size of 108 is sufficiently large
so that the degree of correlation between successive batches is negligible up to at least N =
225 −1 ≈ 3.36×107. Hence, we expect the confidence intervals for estimates of observables
in [4] to be accurate, and recommend the batch method for use with the pivot algorithm as a
simple and reliable method for estimating confidence intervals.
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The direct estimates for τint are close to the indirect estimates, but for sufficiently large N

the direct estimates are systematically low. This suggests that either the tail fitting procedure
breaks down for large N , which we consider unlikely as it is clear from Fig. 17 that the tail
has little curvature for large N . Or, for large N the truncated part of the tail still contributes
non-negligibly to the integrated autocorrelation time, i.e. the exponential autocorrelation
time is greater than O(N/f ). We consider this latter explanation to be more probable, and
will explore the asymptotic behavior of the exponential autocorrelation time in future work.

We refer the interested reader to [15, 17] for more information on the autocorrelation
function for the pivot algorithm.

6 Performance: Comparison with Other Implementations

In this section we present detailed comparison of the performance of the SAW-tree imple-
mentation with the implementations of Madras and Sokal [17] and Kennedy [9], for N -step
SAWs on Z

2, Z
3, and Z

4, with N ranging from 3 to 33554431.
For this section we will use the shorthand notations S-t for the SAW-tree implemen-

tation, M&S for the hash table implementation of Madras and Sokal, and K for Kennedy’s
implementation.

6.1 Experimental Details

For testing M&S we wrote our own version using the programming language C. This im-
plementation has not been extensively polished for maximum efficiency, and so it is highly
likely that there exist other implementations which are faster by a (small) constant factor.

For testing K, we used Kennedy’s C++ program SAW_pivot v1.0, which has been re-
leased under the GNU General Public Licence. For information about this implementation,
we recommend you consult the relevant article [9], as well as the source code.2 We used
the default settings for SAW_pivot, which meant that updates to the data structure were
performed every Npivot = �(N/40)1/2� successful pivots (we set Npivot = 1 for N ≤ 40).
Kennedy [9] indicates that the performance of the algorithm is relatively insensitive to the
precise choice of Npivot, and so we expect that tuning Npivot would result in, at most, only
modest improvement in performance.

We have observed that K is faster when walks are rod-like, presumably because the in-
tersection testing algorithm is more efficient when SAWs are spread out.3 For this reason
the timing experiments were initialized with SAWs sampled from the equilibrium distribu-
tion, rather than straight rods; these SAWs were generated via the pivot algorithm using the
SAW-tree implementation.

The computer experiment was performed on a 64-bit Linux machine with Xeon
Barcelona 2.83 GHz quad-core processors. The programs were compiled with gcc version
4.1.2, with optimization flag “-O3”; other optimization flags made little if any difference.

We do not include error bars for our measurements, but we have repeated the experi-
ment to ensure that these numbers are reproducible, and have verified that the deviations
between different runs are quite small. We present our results in Table 4 of Appendix B and
graphically in Figs. 19–21.

2Available at http://math.arizona.edu/~tgk/
3Interestingly, this is in stark contrast to the behavior of the SAW-tree implementation, where long straight
segments in rod-like walks result in significant performance degradation, as explained in Sect. 4.

http://math.arizona.edu/~tgk/
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Fig. 19 T (N) for the Madras
and Sokal, Kennedy, and
SAW-tree implementations on Z

2

Fig. 20 T (N) for the Madras
and Sokal, Kennedy, and
SAW-tree implementations on Z

3

Fig. 21 T (N) for the Madras
and Sokal, Kennedy, and
SAW-tree implementations on Z

4

6.2 Discussion

In Fig. 19, and to a lesser extent in Figs. 20 and 21, a kink is visible in each of the curves,
indicating the length of walk where a hardware limit is reached and the computer programs
become memory bound. This occurs at shorter lengths for S-t and M&S, as our implemen-
tations of these algorithms use significantly more memory than K.
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In [4] we made the statement “For SAWs of length N = 106 on the cubic lattice,
the performance gain for our implementation is approximately 200 when compared with
Kennedy’s, and over a thousand when compared with that of Madras and Sokal”. This state-
ment was based on testing of an earlier version of our SAW-tree implementation, on a differ-
ent computer to the tests reported here, and we regard the figures in Table 4 of Appendix B
as more reliable. In this table, we find that for SAWs on Z

3 with N = 1048576, S-t is 385
times faster than K and 3830 times faster than M&S.

For this computer experiment the only observable calculated was R2
e ; it is straightforward

to extend this to other observables such as R2
g and R2

m for the S-t and M&S implementations
for a constant factor penalty. It is likely also possible to do the same thing for K, but despite
the clear performance advantage for this algorithm over M&S, to the best of our knowledge
this has not been done.

We observe from the table and graphs that S-t is lightweight, as it is comparable with
M&S for short walks with as few as 15 steps. For Z

2, Z
3, and Z

4, S-t is in fact faster than
the other implementations for 63 or more steps.

The difference between the implementations is particularly stark for N � 106, where S-t
is significantly faster than the other implementations in all dimensions; this improvement is
quite dramatic for Z

3 and Z
4.

On the basis of this computer experiment, where the precise timings are compiler and
machine dependent, we can nevertheless draw the following robust conclusions: the SAW-
tree implementation is efficient for short walks, and much more powerful than other im-
plementations for long walks. Compared with Kennedy’s implementation, there is a large
performance boost for Z

2, and a dramatic performance boost for Z
d with d ≥ 3.
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Appendix A: Example SAW-Trees

Fig. 22 SAW-tree which is
precisely equivalent to the pivot
sequence representation for a
walk with n sites. Note that q(0)

is an overall symmetry which is
applied to the whole walk, and
cannot be directly included in the
SAW-tree data structure

Fig. 23 A SAW-tree
representation of ωa (from
Fig. 1) involving proper rotations
only
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Fig. 24 A SAW-tree
representation of ωa (from
Fig. 1) involving proper and
improper rotations

Appendix B: Running Times of SAW-Tree, Madras and Sokal, and Kennedy
Implementations of the Pivot Algorithm

Table 4 T (N) for the SAW-tree implementation (S-t) on Z
2, Z

3, and Z
4, with relative performance given

for the implementations of Madras and Sokal (M&S) [17] and Kennedy (K) [9]. These numbers are given as a
rough guide only, and are machine and compiler dependent

N Z
2

Z
3

Z
4

S-t M&S/S-t K/S-t S-t M&S/S-t K/S-t S-t M&S/S-t K/S-t

(µs) (µs) (µs)

3 0.12 0.647 1.6 0.18 0.715 1.79 0.23 0.602 1.98

7 0.23 0.61 1.13 0.31 0.671 1.34 0.38 0.637 1.68

15 0.32 0.681 1.04 0.44 0.802 1.27 0.55 0.800 1.69

31 0.41 0.894 1.06 0.59 0.981 1.37 0.75 1.05 1.89

63 0.50 1.26 1.15 0.76 1.37 1.58 0.98 1.36 2.18

127 0.59 1.53 1.32 0.95 1.83 1.95 1.25 1.92 2.73

255 0.68 2.16 1.45 1.18 2.70 2.30 1.58 2.85 3.32

511 0.77 3.27 1.66 1.43 3.97 2.89 1.96 4.42 4.41

1023 0.87 5.15 1.90 1.71 6.31 3.75 2.41 7.41 6.13

2047 0.95 8.85 2.21 2.01 10.6 5.01 2.94 12.5 8.98

4095 1.04 14.9 2.68 2.32 17.7 6.90 3.55 20.8 13.7

8191 1.12 25.0 3.25 2.65 28.8 9.84 4.24 34.7 21.8

16383 1.19 41.5 4.00 3.00 47.5 14.4 5.01 57.8 35.8

32767 1.27 68.6 4.92 3.36 79.2 21.5 5.88 100 59.6

65535 1.34 120 6.13 3.77 139 32.3 6.95 177 99.3

131071 1.68 186 6.50 4.63 272 44.5 8.52 476 164
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Table 4 (Continued)

N Z
2

Z
3

Z
4

S-t M&S/S-t K/S-t S-t M&S/S-t K/S-t S-t M&S/S-t K/S-t

(µs) (µs) (µs)

262143 2.15 536 6.76 5.58 949 74.0 10.23 1.54 × 103 355

524287 2.56 1.37 × 103 15.7 6.55 2.07 × 103 195 12.19 3.28 × 103 821

1048575 2.91 2.51 × 103 32.2 7.53 3.83 × 103 385 14.28 6.02 × 103 1.99 × 103

2097151 3.25 4.48 × 103 47.5 8.56 6.22 × 103 740 16.75 1.10 × 104 4.60 × 103

4194303 3.60 7.14 × 103 63.5 9.62 1.14 × 104 1.37 × 103 19.32 1.88 × 104 9.41 × 103

8388607 3.96 1.15 × 104 82.0 10.65 2.09 × 104 2.42 × 103 22.07 3.42 × 104 1.74 × 104

16777215 4.29 1.96 × 104 104 11.65 3.49 × 104 4.36 × 103 24.93 6.31 × 104 2.97 × 104

33554431 4.57 3.52 × 104 134 12.58 6.17 × 104 7.13 × 103 28.03 1.22 × 105 5.44 × 104

References

1. Alexandrowicz, Z.: Monte Carlo of chains with excluded volume: a way to evade sample attrition.
J. Chem. Phys. 51, 561–565 (1969)

2. Baiesi, M., Orlandini, E., Stella, A.L.: Peculiar scaling of self-avoiding walk contacts. Phys. Rev. Lett.
87, 070602 (2001)

3. Caracciolo, S., Guttmann, A.J., Jensen, I., Pelissetto, A., Rogers, A.N., Sokal, A.D.: Correction-to-
scaling exponents for two-dimensional self-avoiding walks. J. Stat. Phys. 120, 1037–1100 (2005)

4. Clisby, N.: Accurate estimate of the critical exponent ν for self-avoiding walks via a fast implementation
of the pivot algorithm. Phys. Rev. Lett. 104, 055702 (2010)

5. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache oblivious algorithms. In: Proceedings
40th Annual Symposium on Foundations of Computer Science, pp. 285–297 (1999)

6. Gabay, M., Garel, T.: Renormalization along the chemical sequence of a single polymer chain. J. Phys.
Lett. 39, 123–125 (1978)

7. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Yormark, B. (ed.) SIGMOD
’84, pp. 47–57. ACM, New York (1984)

8. Hara, T., Slade, G.: Self-avoiding walk in five or more dimensions I. The critical behaviour. Commun.
Math. Phys. 147, 101–136 (1992)

9. Kennedy, T.: A faster implementation of the pivot algorithm for self-avoiding walks. J. Stat. Phys. 106,
407–429 (2002)

10. Klosowski, J.T., Held, M., Mitchell, J.S.B., Sowizral, H., Zikan, K.: Efficient collision detection using
bounding volume hierarchies of k-dops. IEEE T. Vis. Comput. Gr. 4, 21–36 (1998)

11. Kremer, K., Baumgärtner, A., Binder, K.: Monte Carlo renormalization of hard sphere polymer chains
in two to five dimensions. Z. Phys. B, Condens. Matt. 40, 331–341 (1981)

12. Kumar, P.: Cache Oblivious Algorithms, pp. 193–212. Springer, Berlin (2003). Chap. 9
13. Lal, M.: ‘Monte Carlo’ computer simulation of chain molecules. I. Mol. Phys. 17, 57–64 (1969)
14. Lawler, G.F., Schramm, O., Werner, W.: On the scaling limit of planar self-avoiding walk. In: Fractal

Geometry and Applications: a Jubilee of Benoit Mandelbrot, Part 2. Proc. Sympos. Pure Math., vol. 72,
pp. 339–364. Am. Math. Soc., Providence (2004)

15. Li, B., Madras, N., Sokal, A.D.: Critical exponents, hyperscaling, and universal amplitude ratios for two-
and three-dimensional self-avoiding walks. J. Stat. Phys. 80, 661–754 (1995)

16. Madras, N., Slade, G.: The Self-Avoiding Walk. Birkhaüser, Boston (1993)
17. Madras, N., Sokal, A.D.: The pivot algorithm: A highly efficient Monte Carlo method for the self-

avoiding walk. J. Stat. Phys. 50, 109–186 (1988)
18. Müller, S., Schäfer, L.: On the number of intersections of self-repelling polymer chains. Eur. Phys. J. B

2, 351–369 (1998)
19. Nienhuis, B.: Exact critical point and critical exponents of O(n) models in two dimensions. Phys. Rev.

Lett. 49, 1062–1065 (1982)
20. Oono, Y.: Renormalization along the polymer chain. J. Phys. Soc. Jpn. 47, 683–684 (1979)



392 N. Clisby

21. Sedgewick, R.: Algorithms in C, Parts 1–4, 3rd edn. Addison-Wesley, Reading (1998)
22. Sokal, A.D.: Monte Carlo methods for the self-avoiding walk. arXiv:hep-lat/9405016 (1994)
23. Sokal, A.D.: Monte Carlo methods for the self-avoiding walk. Nucl. Phys. B (Proc. Suppl.) 47, 172–179

(1996)
24. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time. In: Proceedings 16th

Annual Symposium on Foundations of Computer Science, pp. 75–84 (1975)

http://arxiv.org/abs/hep-lat/9405016

	Efficient Implementation of the Pivot Algorithm for Self-avoiding Walks
	Abstract
	Introduction and Results
	Pivot Algorithm
	Results
	Outline of Paper

	Implementation Details
	The Self-avoiding Walk
	Definitions
	Guide to the Interpretation of Pseudo-code
	SAW-Tree Data Structure
	Primitive Operations
	User Level Operations
	High Level Functions
	Main Program

	Algorithmic Complexity
	Background
	Successful Pivot
	Algorithmic Complexity of Attempt_pivot_simple
	Algorithmic Complexity of Attempt_pivot_fast
	d > 3
	Numerical Evidence
	Summary

	Initialization
	Algorithmic Complexity of Pseudo_dimerize

	Error Estimates and the Autocorrelation Function
	Performance: Comparison with Other Implementations
	Experimental Details
	Discussion

	Acknowledgements
	Appendix A: Example SAW-Trees
	Appendix B: Running Times of SAW-Tree, Madras and Sokal, and Kennedy Implementations of the Pivot Algorithm
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


